Code
= 6 TARGET_SITE_ID
1600 masl
November 17, 2024
from datetime import date, datetime, timedelta, timezone
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from startleiter.utils import get_engine, get_flights, get_predictions
engine = get_engine()
df_flight = get_flights(engine, TARGET_SITE_ID)
df_pred = get_predictions(engine, TARGET_SITE_ID)
validtime | flying_probability | max_altitude_masl | max_distance_km | |
---|---|---|---|---|
24683 | 2024-11-17 | 0.660030 | 2600.0 | 50.0 |
24690 | 2024-11-18 | 0.506053 | 3100.0 | 10.0 |
24697 | 2024-11-19 | 0.401628 | 3600.0 | 50.0 |
24704 | 2024-11-20 | 0.551067 | 3100.0 | 10.0 |
24711 | 2024-11-21 | 0.785363 | 2600.0 | 50.0 |
sns.set()
ts = df_flight.set_index("datetime").sort_index()
keep_cols = ["date", "max_altitude_m", "length_km", "airtime_hours"]
ts = ts[keep_cols]
empty_row = pd.Series(name=pd.Timestamp.today(tz="UTC"), data=[None,] * len(keep_cols), index=keep_cols)
ts = pd.concat([ts, empty_row.to_frame().transpose()])
# compute reference statistics
n_years = 6
clim = ts.resample("1D").mean(numeric_only=True)
clim = clim.groupby(clim.index.isocalendar().week)
clim = clim.rolling(window=f"{n_years * 365}D", center=False).mean().reset_index(0, drop=True)
clim = clim.sort_index().rolling("20D", center=True).mean()
clim_counts = ts.date.resample("1D").count()
clim_counts = clim_counts.where(clim_counts > 0)
clim_counts = clim_counts.groupby(clim_counts.index.isocalendar().week)
clim_counts = clim_counts.rolling(window=f"{n_years * 365}D", center=False).mean().reset_index(0, drop=True)
clim_counts = clim_counts.sort_index().rolling("20D", center=True).mean()
end = datetime.now(timezone.utc)
start = end - timedelta(days=90)
clim = clim[clim.index > start]
clim_counts = clim_counts[clim_counts.index > start]
dfs = df_flight[df_flight.datetime > start]
dfg = dfs.groupby(df_flight.date).datetime.count()
fig, axs = plt.subplots(4, sharex=True, figsize=(7, 10))
# reference lines
axs[0].plot(clim_counts.index, clim_counts.values, color="tab:red")
axs[1].plot(clim.index, clim.max_altitude_m, color="tab:red")
axs[2].plot(clim.index, clim.length_km, color="tab:red")
axs[3].plot(clim.index, clim.airtime_hours, color="tab:red")
axs[3].tick_params(axis="x", labelrotation=45)
# predictions
pred = df_pred[df_pred.leadtime_days==0].set_index("validtime").sort_index()
axs[0].twinx().step(pred.index, pred.flying_probability, where="post", color="gray", alpha=0.5)
twinx = plt.gca()
twinx.grid(None)
twinx.set_ylim([0, 1])
twinx.set_ylabel("Flyability []")
axs[1].step(pred.index, pred.max_altitude_masl, where="post", color="gray", alpha=0.5)
axs[2].step(pred.index, pred.max_distance_km, where="post", color="gray", alpha=0.5)
# plot individual flights
ax0 = sns.scatterplot(x=dfg.index, y=dfg.values, marker="x", ax=axs[0])
ax1 = sns.scatterplot(x="datetime", y="max_altitude_m", marker="x", data=dfs, ax=axs[1])
ax2 = sns.scatterplot(x="datetime", y="length_km", marker="x", data=dfs, ax=axs[2])
ax3 = sns.scatterplot(x="datetime", y="airtime_hours", marker="x", data=dfs, ax=axs[3])
ax0.set(ylabel="No. flights per day")
ax1.set(ylabel="Max altitude [m]")
ax2.set(ylabel="Distance [km]")
ax3.set(ylabel="Airtime [h]")
ax0.set_xlim([start, end])
ax1.set_xlim([start, end])
ax2.set_xlim([start, end])
ax3.set_xlim([start, end])
plt.tight_layout()